Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
International Journal of Oral Science ; (4): 90-97, 2011.
Article in English | WPRIM | ID: wpr-269671

ABSTRACT

Information on co-adherence of different oral bacterial species is important for understanding interspecies interactions within oral microbial community. Current knowledge on this topic is heavily based on pariwise coaggregation of known, cultivable species. In this study, we employed a membrane binding assay coupled with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) to systematically analyze the co-adherence profiles of oral bacterial species, and achieved a more profound knowledge beyond pairwise coaggregation. Two oral bacterial species were selected to serve as "bait": Fusobacterium nucleatum (F. nucleatum) whose ability to adhere to a multitude of oral bacterial species has been extensively studied for pairwise interactions and Streptococcus mutans (S. mutans) whose interacting partners are largely unknown. To enable screening of interacting partner species within bacterial mixtures, cells of the "bait" oral bacterium were immobilized on nitrocellulose membranes which were washed and blocked to prevent unspecific binding. The "prey" bacterial mixtures (including known species or natural saliva samples) were added, unbound cells were washed off after the incubation period and the remaining cells were eluted using 0.2 mol x L(-1) glycine. Genomic DNA was extracted, subjected to 16S rRNA PCR amplification and separation of the resulting PCR products by DGGE. Selected bands were recovered from the gel, sequenced and identified via Nucleotide BLAST searches against different databases. While few bacterial species bound to S. mutans, consistent with previous findings F. nucleatum adhered to a variety of bacterial species including uncultivable and uncharacterized ones. This new approach can more effectively analyze the co-adherence profiles of oral bacteria, and could facilitate the systematic study of interbacterial binding of oral microbial species.


Subject(s)
Adult , Animals , Humans , Mice , Bacterial Adhesion , DNA, Bacterial , Denaturing Gradient Gel Electrophoresis , Fusobacterium nucleatum , Physiology , Membranes, Artificial , Microbial Interactions , Physiology , Polymerase Chain Reaction , Protein Binding , Saliva , Microbiology , Streptococcus mutans , Physiology
2.
International Journal of Oral Science ; (4): 47-58, 2009.
Article in English | WPRIM | ID: wpr-269735

ABSTRACT

Since the initial observations of oral bacteria within dental plaque by van Leeuwenhoek using his primitive microscopes in 1680, an event that is generally recognized as the advent of oral microbiological investigation, oral microbiology has gone through phases of "reductionism" and "holism". From the small beginnings of the Miller and Black period, in which microbiologists followed Koch's postulates, took the reductionist approach to try to study the complex oral microbial community by analyzing individual species; to the modern era when oral researchers embrace "holism" or "system thinking", adopt new concepts such as interspecies interaction, microbial community, biofilms, poly-microbial diseases, oral microbiological knowledge has burgeoned and our ability to identify the resident organisms in dental plaque and decipher the interactions between key components has rapidly increased, such knowledge has greatly changed our view of the oral microbial flora, provided invaluable insight into the etiology of dental and periodontal diseases, opened the door to new approaches and techniques for developing new therapeutic and preventive tools for combating oral polymicrobial diseases.


Subject(s)
Humans , Bacteria , Classification , Bacterial Infections , Bacterial Physiological Phenomena , Biofilms , Dental Plaque , Microbiology , Mouth , Microbiology , Periodontal Diseases , Microbiology , Tooth Diseases , Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL